

AT1043 評価キット(CTP-1043-001) アプリケーションマニュアル

Rev. 1.1 2018/02/23

株式会社 カンテック

1.0 2018/01/18 初版発行	
1.0 2018/01/18 初放発11 1.1 2018/02/23 CTP-1043-001 専用マニュアルに変更 接続部分の修正	

目次

1	はじめに	1
2	装置外観、名称	2
3	接続	3
3-1	1 接続	3
<u>4</u>	アプリケーション	4
5	アプリケーションの起動	5
<u>6</u>	アプリケーションの操作方法	6
6-1	1 モニタ機能	6
6-2	2 表示レンジの変更	6
6-3	3 レジスタ値、EEPROM 値の変更	7
6-3	3 自動調整	7
<u>7</u>	AT1043 について	8
7-1	1 端子構成	8
7-2	2 内部レジスタ	9
7-2	2-3 内部レジスター覧	9
7-2	2-4 レジスタビット構成	9
7-3	3 レジスタ詳細	10
7-3	3-1 GF レジスタ	10
7-3	3-2 BF レジスタ	10
7-3	3-3 BTC レジスタ	11
7-3	3-4 VNS レジスタ	11
7-3	3-5 SAR レジスタ	12
8	調整方法	13

1 はじめに

本書は、AT043評価キットとそれをパソコン上で制御するアプリケーションに関するマニュアルです。

2 装置外観、名称

- ① 電源アダプタ入力
- ② USB コネクタ
- ③ 電極接続部
- ④ LED

- ・・・ 電源アダプタを接続します
 - ・・ USB コネクタを接続します
- ・・・ 電極を接続します
- ・・・ 電源 LED とモニタのレベル LED

3 接続

3-1 接続

必要なもの

- 本体
- 電極
- パソコン(Windows7以降でUSBポートの付いているもの)
- microB USB ケーブル
- 電源アダプタ(パソコンから電源供給する場合は必要ありませんがノイズを抑えます)
 DC6V 以上、極性:センタープラス
- (1)本体と電極を接続します。
- (2)本体と電源アダプタを接続します

電源を ON にすると電源 LED(緑)が点灯します

(3)本体とパソコンの USB ケーブルを接続し、設定ツールを立ち上げます 設定ツールの使い方は、「4 アプリケーション」を参照して下さい

4 アプリケーション

設定ツールの動作環境は以下の通りです

表 4-1 アプリケーション動作環境

項目	内容	備考
OS	Windows 7 SP1 以降	最新パッチ適用のこと
.NET Framework	.NET Framework 4.5 以降	

インストール

インストーラーはありません。EXE ファイルの実行のみです。

アンインストール

レジストリの変更はありませんので EXE ファイルを削除して下さい。

5 アプリケーションの起動

設定ツールを起動すると以下の画面が開きます。

評価機に USB ケーブルを接続した状態で起動してください

接続エラーと表示された場合は USB ケーブルが正しく接続されて電源が入っているか確認してください

🔜 AT1043評価キットフ	ブリケーション ー	
接続エラー	□ 電源ON時自動調整	自動調整
Max: 260		
Min: 0	VO VNS	
(03)GF 0		
(04)BF 0		
		.:

5

6 アプリケーションの操作方法

1	リアルタイム出力値	•••	現在の出力値が表示されます
2	表示レンジの変更	•••	縦軸の表示範囲の変更ができます
3	自動調整チェックボックス	•••	チェックで電源投入時に自動調整を行います
4	自動調整ボタン	• • •	即座に自動調整を行います
(5)	レジスタ値	•••	レジスタ値や EEPROM 値の変更ができます

6-1 モニタ機能

現在の出力値がリアルタイムで表示されます。

青いラインが出力値、黄色いラインが VNS レジスタ値となっています

AC1043のLOピンはVNSを基準にしています

また、モニタ画面上でマウスの右クリックをするとクリックした値で VNS を書き換えます

6-2 表示レンジの変更

左側が最大値、右側が最小値になります 電源 OFF で設定値は記録されません

6-3 レジスタ値、EEPROM 値の変更

各設定値ボックスの左側がレジスタ値、右側が EEPROM 値となっています

▲でカウントアップ、▼でカウントダウンします

表示は 16 進表示です

レジスタの設定値は即座に反映され、EEPROM の設定値は電源再投入後にレジスタ値に書かれて反映されます

6-3 自動調整

チェックボックスにチェックが入っていると、次回の電源起動時に自動調整されます ボタンをクリックした場合は即座に自動調整されます

自動調整は感度が合っていない場合、範囲内に調整されない場合があります 自動調整はあくまで範囲内に入るようにする設定ですので最終調整は手動で行ってください

7 AT1043 について

7-1 端子構成

表 7-1 AT1043 端子構成

端子 No	端子名	I/O	機能概要
1	GNA	-	アナロググラウンド
2	CCS	AO	Capacitance for Cable Shield
3	CSO	AO	Cable Shield Out
4	SSO	AO	Stealth Shield Out
5	CSS	AO	Capacitance for Stealth Shield
6	SSI	AI	Stealth Shield Input
7	VDD	-	電源
8	XI	AI	発振器用素子接続
9	XO	AO	発振器用素子接続
10	RXD	Ι	受信 from CPU
11	TXD	0	送信 to CPU
12	GND	-	ディジタルグラウンド
13	MON	AO	内部電圧モニタ出力
14	LO	0	検出論理出力
15	VO	AO	検出アナログ出力
16	EDO	I/Z	データ入力 from EEPROM ※1
17	EDI	O/Z	データ出力 to EEPROM ※1
18	ECK	O/Z	クロック出力 to EEPROM ※1
19	ECS	O/Z	チップセレクト for EEPROM ※1
20	CFO	AO	LPF 出力
21	CF1	AI	LPF 用帰還容量接続
22	CF2	AI	LPF 用接地容量接続
23	SAI	AI	Sensor A Input
24	SBI	AI	Sensor B Input

I 論理入力端子

O 論理出力端子

AI アナログ入力端子

AO アナログ出力端子

Z HiZ 状態 ※1 本端子は内部プルダウン抵抗内蔵(約20KΩ)

アドレス 0x10 以降のレジスタは、EEPROM への書き込み、読み出しはできません。 また電源投入時に EEPROM の値をレジスタにロードします

7-2-3 内部レジスター覧

表 7-2 内部レジスター覧

アドレス	レジスタ名	機能	R/W	有効ビット
0x03	GF	増幅器利得設定	R/W	8
0x04	BF	オフセット調整	R/W	8
0x05	BTC	温度補正係数設定	R/W	8
0x06	VNS	近接検出比較電圧設定	R/W	8
0x08	FDR	センサ駆動Φ1 周期設定	R/W	4
0x0A	SAR	自動センサオフセット補正電圧設定	R/W	8
0x0B	MOD1	コントロールレジスタ1	R/W	7
0x0C	MOD2	コントロールレジスタ2	R/W	5
0x10	ADR	モニタ出力電圧 AD 結果	R	8
0x11	STS1	ステータスレジスタ	R/[W]	7
0x12	STS2	ステータスレジスタ	R/[W]	2

7-2-4 レジスタビット構成

表 7-3 レジスタビット構成

アドレス	レジスタ名	b7	b6	b5	b4	b3	b2	b1	b0
0x03	GF				DA	TA			
0x04	BF				DA	TA			
0x05	BTC				DA	TA			
0x06	VNS				DA	TA			
0x08	FDR	-	-	-	-		DA	TA	
0x0A	SAR				DA	TA			
0x0B	MOD1	SLP	TS	NT	SA	AOF	-	S	EL
0x0C	MOD2	-	-	-	LOM	IM	CS	RESB	RESA
0x10	ADR				DA	TA			
0x11	STS1	RES	-	LO	AVL	VL	OE	TE	PE
0v12	STS2	_	_	_	_	_	_	EP	EP
0/12	5152							BSY	ERR

7-3 レジスタ詳細 アプリケーションで設定する必要のないレジスタは省略しています

7-3-1 GFレジスタ

名称	GF Gain Factor control
アドレス	03 H
機能	增幅器利得設定
説明	増幅器の利得を変更します。 利得範囲は 1~10 倍です。

	b7	b6	b5	b4	b3	b2	b1	b0
Bit field	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				DA	TA			
初期値	80 H							

設定範囲	00 H	1倍
	80 H	5.5 倍
	FF H	10 倍

7-3-2 BFレジスタ

名称	BF Bias Factor control
アドレス	04 H
機能	オフセット調整
説明	出力電圧オフセットを変更します。

	b7	b6	b5	b4	b3	b2	b1	b0
Bit field	R/W							
				DA	TA			
初期値				80	Н			

設定範囲	00 H	DAC 出力電圧=1.5[V]
	80 H	DAC 出力電圧=2.5[V]
	FF H	DAC 出力電圧=3.5[V]

名称	BTC Bias Temperature Coefficient
アドレス	05 H
機能	温度補正係数設定
	内蔵温度計出力の補正係数を設定し、出力オフセット変動の補正を行います。
説明	VO 出力換算で約-24[mV/℃]~24[mV/℃]の補正を実現します。
	補正係数範囲は±6 倍です。

	b7	b6	b5	b4	b3	b2	b1	b0
Bit field	R/W							
				DA	ATA			
初期値				80	H			

設定範囲	00 H	6 倍
	80 H	約 -0.023 倍
	FF H	-6 倍

7-3-4 VNSレジスタ

名称	VNS Voltage for Near Sense				
アドレス	06 H				
機能	近接検出比較電圧設定				
言出日日	近接検出動作のコンパレータ比較電圧値を設定します。				
司化中方	この電圧は VO 端子電圧と比較されます。				

	b7	b6	b5	b4	b3	b2	b1	b0
Bit field	R/W							
				DA	TA			
初期値				80	Н			

= 0	
= <u></u> =	±

用	00 H	DAC 出力電圧=0[V]
	80 H	DAC 出力電圧=2.5[V]
	FF H	DAC 出力電圧=5[V]

名称	SAR Successive Approximation Register
アドレス	0A H
機能	センサオフセット補正電圧設定
≣⇔⊓⊟	センサのオフセットを補正する場合に使用します。
回几四日	本レジスタは、通常 MOD1 レジスタの AOF(b3)ビットを ON にし、自動設定します

	b7	b6	b5	b4	b3	b2	b1	b0
Bit field	R/W							
				DA	ATA			
初期値				00	H			

設定範囲	00 H	DAC 出力電圧=2.5[V]
	80 H	DAC 出力電圧=1.25[V]
	FF H	DAC 出力電圧=0[V]

8 調整方法

調整方法の一例を以下に示します

レジスタの初期値は以下の通りで、自動調整のチェックボックスは OFF にしています

アドレス	レジスタ名	初期値
0x03	GF	0xFF
0x04	BF	0x80
0x05	BTC	0x80
0x06	VNS	0x80
0x0A	SAR	0x00

図の状態では出力が7になっています(電極の形状、サイズにより異なります)

SAR レジスタ値を「FF」にしてみます ▲で増え、▼で減ります。またはボックスに直接数値を入力 SAR を 0x00 から 0xFF の範囲で設定したときにモニタ出力が 0~250 の範囲で表示されない場合は IC での調整は不可能なので電極の調整または外付けのコンデンサ等が必要になります

この状態から SAR レジスタ値を下げていって、出力が 50 前後になるようにします 微調整は BF レジスタで調整します

🔜 AT1043評価キッ	トアプリケーション							—		×
55							□ 電源ON時	自動調整	自動	周整
Max: 260	260									
	240									
	220									
1 1	200									
1 1	180				_					
	160									
1 1	140				_					
	120				-				_	
	100									
	80									
	60								_	
	40				_					
	20									
	0	7 100		0007	10070	12077	100		1200	
	1205/	/ 128	02 1.	2007	12072	12077	120	02	1200	57
	— vo	VNS								
Min: 0		- 110								
(02)05										
(03)GF F	-+	- (05)BTC	80 -	80 - (0	A)SAR	AE 🗧 80	-			
(04)BF 8	30 🗘 80	÷ (06)VNS	s 80 📮	80 🜲						
										.::

調整した結果の値を EEPROM に記録します

*次回の起動時に自動調整をしない場合は電源 ON 時自動調整のチェックボックスを外してください

